

This article was downloaded by:

On: 25 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Separation Science and Technology

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713708471>

Rapid Separation of Carrier-Free ^{95}Zr from ^{95}Nb Using MnO_2 Column

J. P. Shukla^a; E. S. Chandrasekharan^{ab}; K. Rengan^{ac}

^a RADIOCHEMISTRY DIVISION, BHABHA ATOMIC RESEARCH CENTRE, BOMBAY, INDIA ^b

Department of Chemistry, Michigan State University, East Lansing, Michigan ^c Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan

To cite this Article Shukla, J. P. , Chandrasekharan, E. S. and Rengan, K.(1972) 'Rapid Separation of Carrier-Free ^{95}Zr from ^{95}Nb Using MnO_2 Column', Separation Science and Technology, 7: 2, 193 — 198

To link to this Article: DOI: 10.1080/00372367208058981

URL: <http://dx.doi.org/10.1080/00372367208058981>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

NOTE

Rapid Separation of Carrier-Free ^{95}Zr from ^{95}Nb Using MnO_2 Column

J. P. SHUKLA, E. S. CHANDRASEKHARAN,* and K. RENGAN†

RADIOCHEMISTRY DIVISION
Bhabha Atomic Research Centre
BOMBAY-85, INDIA

Summary

An efficient and simple method is presented for the radiochemical separation of ^{95}Zr from ^{95}Nb in a carrier-free state. ^{95}Zr is desorbed quantitatively from the MnO_2 column using a $3\text{ M HNO}_3 + 0.05\text{ M HF}$ solution. By following the recommended procedure, a decontamination factor higher than 10^6 is achieved. The radionuclidian purity of the separated ^{95}Zr has been ascertained by gamma-ray energy measurements as well as by a radiochemical method. The entire procedure takes less than 20 min.

^{95}Nb is the daughter of ^{95}Zr , and the separation of these two isotopes in a carrier-free state poses a difficult problem in many radiochemical separations. No satisfactory scheme for the carrier-free separation of ^{95}Zr from ^{95}Nb was found to have been proposed, though some reports are available for the milking of ^{95}Nb from the ^{95}Zr parent (1, 2). Solvent

* Present address: Department of Chemistry, Michigan State University, East Lansing, Michigan.

† Present address: Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan 48197.

extraction procedures using thenoyl trifluoroacetone (3-6) and tri-*n*-butyl phosphine oxide (7) are rapid and provide good decontaminations, but the recovery of the activities is not quantitative. Precipitation (8) as BaZrF₆ and coprecipitation (8) with LaF₃ are quick but the subsequent purification using mandelic acid is rather slow. Moreover, about 0.5% of the niobium activity was always found to accompany the zirconium fraction, even after final purification. Ion exchange elution techniques have been recommended for such separations (8), but they are mostly time consuming and unsuitable for carrier-free separations. Radiochemical separation of Zr from Nb with salicyl hydroxamic acid, reported recently (9), merits mention here. A decontamination factor of the order of 5×10^4 was realized. The very poor chemical yield of Zr (only 50-60%) was attributed to losses in the purification steps. Our present study reveals that a better yield as well as a better decontamination factor could be achieved for Zr by using adsorption on MnO₂. The results of this investigation are reported here. This one-step method offers the advantages of speed, clean separation, adaptability to remote control, and can be used with high levels of radiation where ion exchange procedures generally fail. The radionuclidic purity of the separated ⁹⁵Zr has also been confirmed.

EXPERIMENTAL

Adsorber

MnO₂ used in the column experiments was prepared according to the procedure described by Bigliocca et al. (10). The MnO₂ precipitate was dried at 60°C, crushed, and sieved. Only 25-100 mesh particles were used in these experiments in order to get a reasonable flow rate.

Tracer

The beta active nuclides ⁹⁵Zr and ⁹⁵Nb, which were in radioactive equilibrium, were obtained in the form of an oxalate complex in weak oxalic acid solution from the Isotope Division of this establishment.

Countings

A 5.1 × 3.8 cm well-type NaI(Tl) detector connected to a single channel analyzer, two $\pi\beta$ proportional counter, and a 2-cc Ge(Li) detector coupled with a 400 channel analyzer were used for gross gamma-

TABLE 1
Radiochemical Separation of ^{95}Zr from ^{95}Nb Using MnO_2 Column

Experiment No.	% Adsorption of ^{95}Zr - ^{95}Nb on MnO_2 column	% Recovery of ^{95}Zr with $3\text{ M HNO}_3 + 0.05\text{ M HF}$ solution	% ^{95}Nb left over on MnO_2 column	Decontamination factor for Zr from Nb ($\times 10^3$)
1	99.5	96.1	100	1.5
2	99.9	97.4	100	1.8
3	99.7	98.2	100	1.6

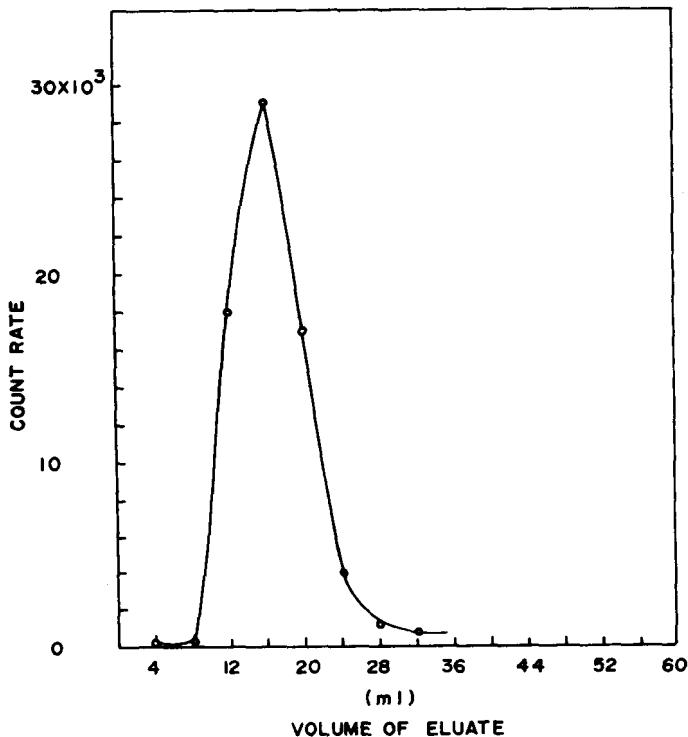


FIG. 1. Elution curve for ^{95}Zr separated from ^{95}Nb with $3\text{ M HNO}_3 + 0.05\text{ M HF}$ solution. Column dimensions: $10 \times 1\text{ cm}$. MnO_2 particles size: 25-100 mesh.

ray countings, beta counting, for the determination of Nb contamination in eluted Zr fraction, and for gamma-ray spectral analysis, respectively.

Radiochemical Procedure

A 10×1 cm column of MnO_2 was used in all column adsorption experiments. The column was equipped with 2 plugs of glass wool at the top and the bottom to retain the adsorber. A known aliquot of a ^{95}Zr - ^{95}Nb equilibrium mixture which gave around 10^6 counts per minute, gamma radioactivity (gamma cpm), was heated to near dryness and fumed 2-3 times with a little HClO_4 to destroy the oxalic acid content of the tracer. Then it was taken up in a small volume of 3 M HNO_3 and loaded onto the MnO_2 column, followed by washing with sufficient nitric acid solution of the same concentration. Table 1 indicates that both Zr and Nb are well adsorbed at this acidity. The adsorbed ^{95}Zr activity was then eluted with a solution of 3 M HNO_3 + 0.05 M HF at a flow rate of 0.5 ml/min. Eluate was collected in 4 ml portions in counting tubes by using a fraction collector, and then counted. A typical elution curve is given in Fig. 1. A portion of the eluate was concentrated and the gamma-ray energy spectrum was taken using a 2-cc Ge(Li) detector.

RESULTS AND DISCUSSION

Experiments carried out to determine the adsorbability of ^{95}Zr and ^{95}Nb with MnO_2 clearly indicated that in 3 M HNO_3 medium it is almost 100%. A 3 M HNO_3 + 0.05 M HF solution used here selectively elutes only zirconium, and niobium is left undisturbed on the column itself. With 20-25 ml of the eluant, more than 95% of the zirconium activity could be easily stripped off the column. The gamma-ray spectra of the loaded ^{95}Zr - ^{95}Nb tracer and that of the eluate recorded using a Ge(Li) detector half an hour after separation are shown in Fig. 2. The 0.765 MeV gamma-ray peak of ^{95}Nb is completely absent in the spectrum of the effluent. This gamma-ray spectral analysis of the eluate leads us to infer that this separation provides good radionuclidic purity.

The retention of ^{95}Zr on the MnO_2 column and the recovery by the HNO_3 -HF mixture were calculated by comparing the area under the 0.725-MeV photopeak of ^{95}Zr . Covell's method (11) was used for peak area calculation. Results of three typical elution experiments are compiled in Table 1.

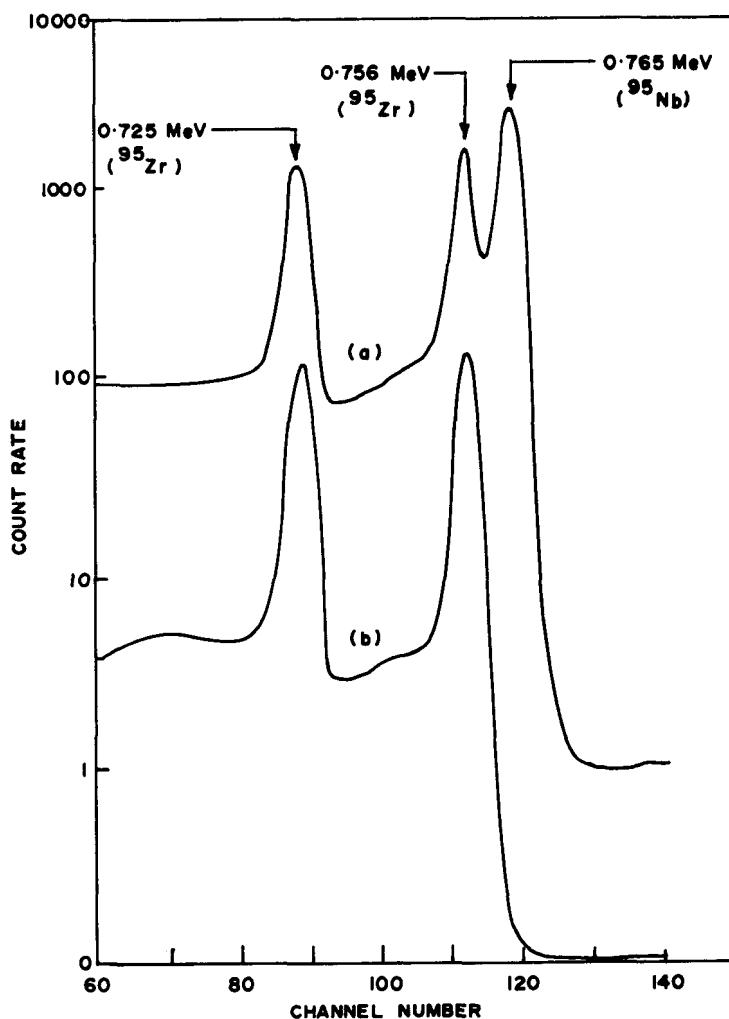


FIG. 2. Gamma-ray spectra of (a) ^{95}Zr - ^{95}Nb tracer before being loaded onto the MnO_2 column, (b) ^{95}Zr separated from ^{95}Nb with $3\text{ M HNO}_3 + 0.05\text{ M HF}$ solution.

The degree of contamination of ^{95}Nb in the eluted ^{95}Zr fraction was determined immediately after its elution by carrying out the chemical separation of niobium. Here Nb was precipitated (carrier added before Zr separation) and the precipitate was counted in an end-window type

beta proportional counter for any activity. A lower limit of 1.5×10^5 was obtained for decontamination of Zr from Nb. This is the highest decontamination factor yet achieved for this separation. Experiments were also carried out to check if there was any contamination of the eluate due to Mn coming from the column, but no traces of Mn could be detected spectrophotometrically in the eluted Zr fraction.

Acknowledgment

The authors are grateful to Dr. M. V. Ramaniah, Head, Radiochemistry Division, for his valuable comments and keen interest in this work.

REFERENCES

1. R. W. Clarke, *Handbook of Radiochemical Exercises*, Pergamon, London, 1965, p. 342.
2. H. Yoshida and C. Yonezawa, *J. Radioanal. Chem.*, **5**, 201 (1970).
3. F. L. Moore, *Anal. Chem.*, **28**, 997 (1956).
4. C. J. Hardy and D. Scargill, *J. Inorg. Nucl. Chem.*, **9**, 322 (1959).
5. H. L. Scherff and G. Herrmann, *Ibid.*, **11**, 247 (1959).
6. W. J. Maeck, S. F. Marsh, and J. E. Rein, *Anal. Chem.*, **35**, 292 (1963).
7. H. Umezawa and R. Hara, *Anal. Chim. Acta*, **23**, 267 (1960).
8. E. P. Steinberg, *The Radiochemistry of Zirconium and Hafnium*, U.S. Atomic Energy Commission, National Academy of Sciences, Nuclear Science Series, Report No. 3011 (1960). *The Radiochemistry of Niobium and Tantalum*, U.S. Atomic Energy Commission, National Academy of Sciences, Nuclear Science Series, Report No. 3039 (1961).
9. S. M. Qaim, *Anal. Chim. Acta*, **31**, 447 (1964).
10. C. Bigliocca, F. Girardi, S. Meloni, J. Pauly, A. Provasoli, and E. Sabbioni, *Anal. Chem.*, **39**, 1634 (1967).
11. D. F. Covell, *Ibid.*, **31**, 1785 (1959).

Received by editor August 9, 1971